Universal Kernels

نویسندگان

  • Charles A. Micchelli
  • Yuesheng Xu
  • Haizhang Zhang
چکیده

In this paper we investigate conditions on the features of a continuous kernel so that it may approximate an arbitrary continuous target function uniformly on any compact subset of the input space. A number of concrete examples are given of kernels with this universal approximating property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Kernels on Non-Standard Input Spaces

During the last years support vector machines (SVMs) have been successfully applied in situations where the input space X is not necessarily a subset of R. Examples include SVMs for the analysis of histograms or colored images, SVMs for text classification and web mining, and SVMs for applications from computational biology using, e.g., kernels for trees and graphs. Moreover, SVMs are known to ...

متن کامل

Universality, Characteristic Kernels and RKHS Embedding of Measures

Over the last few years, two different notions of positive definite (pd) kernels—universal and characteristic—have been developing in parallel in machine learning: universal kernels are proposed in the context of achieving the Bayes risk by kernel-based classification/regression algorithms while characteristic kernels are introduced in the context of distinguishing probability measures by embed...

متن کامل

Universal Approximation of Markov Kernels by Shallow Stochastic Feedforward Networks

We establish upper bounds for the minimal number of hidden units for which a binary stochastic feedforward network with sigmoid activation probabilities and a single hidden layer is a universal approximator of Markov kernels. We show that each possible probabilistic assignment of the states of n output units, given the states of k ≥ 1 input units, can be approximated arbitrarily well by a netwo...

متن کامل

Injective Hilbert Space Embeddings of Probability Measures

A Hilbert space embedding for probability measures has recently been proposed, with applications including dimensionality reduction, homogeneity testing and independence testing. This embedding represents any probability measure as a mean element in a reproducing kernel Hilbert space (RKHS). The embedding function has been proven to be injective when the reproducing kernel is universal. In this...

متن کامل

A Convex Parametrization of a New Class of Universal Kernel Functions for use in Kernel Learning

We propose a new class of universal kernel functions which admit a linear parametrization using positive semidefinite matrices. These kernels are generalizations of the Sobolev kernel and are defined by piecewise-polynomial functions. The class of kernels is termed “tessellated” as the resulting discriminant is defined piecewise with hyper-rectangular domains whose corners are determined by the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2006